Small metal


The refractive index and optical dispersion properties of germanium dioxide makes it useful as an optical material for wide-angle lenses and in optical microscope objective lenses. It is transparent in infrared.

A mixture of silicon dioxide and germanium dioxide ("silica-germania") is used as an optical material for optical fibers and optical waveguides. Controlling the ratio of the elements allows precise control of refractive index. Silica-germania glasses have lower viscosity and higher refractive index than pure silica. Germania replaced titania as the silica dopant for silica fiber, eliminating the need for subsequent heat treatment, which made the fibers brittle.

Germanium dioxide is also used as a catalyst in production of polyethylene terephthalate resin,and for production of other germanium compounds. It is used as a feedstock for production of some phosphors and semiconductor materials.

Germanium dioxide is used in algaculture as an inhibitor of unwanted diatom growth in algal cultures, since contamination with the comparatively fast-growing diatoms often inhibits the growth of or outcompetes the original algae strains. GeO2 is readily taken up by diatoms and leads to silicon being substituted by germanium in biochemical processes within the diatoms, causing a significant reduction of the diatoms' growth rate or even their complete elimination, with little effect on non-diatom algal species. For this application, the concentration of germanium dioxide typically used in the culture medium is between 1 and 10 mg/l, depending on the stage of the contamination and the species.


The first large-scale application for indium was as a coating for bearings in high-performance aircraft engines during World War II. Afterward, production gradually increased as new uses were found in fusible alloys, solders, and electronics. In the 1950s, tiny beads of it were used for the emitters and collectors of PNP alloy junction transistors. In the middle and late 1980s, the development of indium phosphide semiconductors and indium tin oxide thin films for liquid crystal displays (LCD) aroused much interest. By 1992, the thin-film application had become the largest end use.

. molybdenum
 pic   application

About 86% of molybdenum produced is used in metallurgical applications such as alloys, with the rest of molybdenum used as compounds in chemical applications. Estimated fractional global industrial use of molybdenum is structural steel 35%, stainless steel 25%, chemicals 14%, tool & high-speed steels 9%, cast iron 6%, molybdenum elemental metal 6%, and superalloys, 5%.The ability of molybdenum to withstand extreme temperatures without significantly expanding or softening makes it useful in applications that involve intense heat, 
including the manufacture of armor, aircraft parts, electrical contacts, industrial motors and filaments. 
Most high-strength steel alloys (example 41xx steels) contain 0.25% to 8% molybdenum. Despite such small portions, more than 43,000 tonnes of molybdenum are used as an alloying agent each year in stainless steels, tool steels, cast irons and high-temperature superalloys. 
Molybdenum is also used in steel alloys for its high corrosion resistance and weldability. Molybdenum contributes further corrosion resistance to type-300 stainless steels (specifically type-316) and especially so in the so-called superaustenitic stainless steels (such as alloy AL-6XN, 254SMO or 1925hMo). Molybdenum acts by increasing lattice strain, thus increasing the energy required to dissolve out iron atoms from the surface. Molybdenum can also be used to enhance the corrosion resistance of ferritic (for example grade 444) and martensitic (for example 1.4122 and 1.4418) stainless steels.Because of its lower density and more stable price, molybdenum is sometimes used instead of tungsten. An example is the 'M' series of high-speed steels such as M2, M4 and M42 as substitution for the 'T' steel series, which contain tungsten. Molybdenum can be implemented both as an alloying agent and as a flame-resistant coating for other metals. Although its melting point is 2,623 °C (4,753 °F), molybdenum rapidly oxidizes at temperatures above 760 °C (1,400 °F) making it better-suited for use in vacuum environments. 
TZM (Mo (~99%), Ti (~0.5%), Zr (~0.08%) and some C) is a corrosion-resisting molybdenum superalloy that resists molten fluoride salts at temperatures above 1,300 °C (2,370 °F). It has about twice the strength of pure Mo, and is more ductile and more weldable, yet in tests it resisted corrosion of a standard eutectic salt (FLiBe) and salt vapors used in molten salt reactors for 1100 hours with so little corrosion that it was difficult to measure.
Other molybdenum-based alloys that do not contain iron have only limited applications. For example, because of the corrosion resistance against molten zinc, both pure molybdenum and the molybdenum/tungsten alloy (70%/30%) are used for piping, stirrers and pump impellers which come into contact with molten zinc. Other applications as the pure elementMolybdenum powder is used as a fertilizer for some plants, such as cauliflower. Elemental molybdenum is also used in NO, NO2, NOx analyzers in power plants for pollution controls. At 350 °C (662 °F) the element acts as a catalyst for NO2/NOx to form only NO molecules for consistent readings by infrared light.
 Molybdenum anodes replace tungsten in certain low voltage X-ray sources, for specialized uses such as mammography.
The radioactive isotope molybdenum-99 is used to generate technetium-99m, which is used for medical imaging.
Compounds (14% of global use)
Molybdenum disulfide (MoS2) is used as a solid lubricant and a high-pressure high-temperature (HPHT) antiwear agent. It forms strong films on metallic surfaces and is
a common additive to HPHT greases — in the event of a catastrophic grease failure, a thin layer of molybdenum prevents contact of the lubricated parts. It also has semiconducting properties with distinct advantages over traditional silicon or graphene in electronics applications. MoS2 is also used as a catalyst in hydrocracking of petroleum fractions containing nitrogen, sulfur and oxygen.
Molybdenum disilicide (MoSi2) is an electrically conducting ceramic with primary use in heating elements operating at temperatures above 1500 °C in air.
Molybdenum trioxide (MoO3) is used as an adhesive between enamels and metals. Lead molybdate (wulfenite) co-precipitated with lead chromate and lead sulfate is a bright-orange pigment used with ceramics and plastics.
Ammonium heptamolybdate is used in biological staining procedures.
Molybdenum coated soda lime glass is used for CIGS solar cell fabrication.
Phosphomolybdic acid is a stain used in thin layer chromatography.
Molybdenum-99 is a parent radioisotope to the daughter radioisotope technetium-99m, which is used in many medical procedures. The isotope is handled and stored as the molybdate.


Address: 15# Industry Distripark Luoyang Henan P.R.China

Tel/Fax: 0086 -379-64233790

Mobile: 13007555733

Leon lee/Kate zhu

Back to top